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Stokes flow due to a Stokeslet in a pipe 
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Velocity and pressure fields for Stokes flow due to a force singularity (Stokeslet) of 
arbitrary orientation and at arbitrary location inside an infinite circular pipe are 
obtained. Two alternative expressions for the solution, one in terms of a Fourier- 
Bessel type expansion, and the other as a doubly infinite series, are given. The latter is 
especially suitable for computational purposes as it is shown to be an exponentially 
decaying series. From the series it is found that all velocity components decay ex- 
ponentially to zero up- or downstream away from the Stokeslet. This is also true for 
pressure fields of Stokeslets perpendicular to the axis of the pipe. A Stokeslet parallel 
to the axis of the pipe raises the pressure difference between -a to +a by a finite 
non-zero amount. Some numerical results for a Stokeslet parallel to the axis are 
given. Comparison of the results with flow in a two-dimensional channel is also 
discussed. 

1. Introduction 
In  a wide range of animal and plant structures the outer cells of a surface have hair- 

like active extensions called cilia. These cilia move in an organized fashion to produce 
flow in the fluid bathing them. 

A great deal of attention has been given in recent years to fluid movement due to 
cilia in order to try and understand how cilia perform their function, whether it is the 
propulsion of micro-organisms or the transport of fluid and particles through pipes the 
walls of which are covered by cilia. A detailed description and a discussion of ciliary 
motion can be found in Blake & Sleigh (1974), together with an extensive bibliography. 
For propulsion of micro-organisms Blake & Sleigh describe two models used to portray 
the motion of cilia. The first is the envelope approach found to be valid for symplectic 
metachronism. For antiplectic metachronism the envelope approach is not satis- 
factory, and this led to the second model, the ‘cilia sublayer model ’ or ‘ discrete-cilia 
model’, initiated by Blake (1972) and further developed and extended by Liron & 
Mochon ( 1 9 7 6 ~ ) .  

In  the discrete model one approximates each cilium by a line of force singularities 
(Stokeslets) along the centre-line. The velocity field due to all cilia is then found by 
summing over all cilia. Thus, the basic solution needed is the solution to Stokes flow 
due to Stokeslets in the appropriate region. The solution for a Stokeslet above a flat 
plate was given by Blake (1971), and previously by Lorentz (1896). 

Lardner &Shack (1972) used the envelope model to calculate the rate of flow of sperm 
through the ductus efferentes of the male reproductive tract, and obtained results 
about 50 times smaller than observed rates. This is an indication that the envelope 
model is inappropriate and the discrete-cilia approach has to be used. Liron (1978) 
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FIQURE 1. Geometric configuration of the problem and the three co-ordinate systems used. 
X ,  Y,  Z and x, y, z Cartesian co-ordinates. R, a, 2 cylindrical co-ordinates. The Stokeslet is at S. 

used the solution for a Stokeslet between two parallel plates given by Liron & Mochon 
(1976b) ,  to deal with fluid transport between two plates, as an approximation for 
fluid transport in a pipe. The justification for using the parallel-plates, or channel, 
model lies in the similarity, if it  exists, between flow in a pipe and in a channel. In  order 
to justify this approximation, and also to develop a suitable pipe model, the Stokes 
flow solution due to a Stokeslet in a pipe, at arbitrary location and arbitrary orienta- 
tion, is needed. This solution is presented in this paper. 

The problem is formulated in 9 2. In 9 3 the singular infinite solution is transformed 
into a Fourier-Bessel type expansion. The auxiliary solution needed in order to 
satisfy the no-slip boundary conditions on the pipe wall is given in 94, again as a 
Fourier-Bessel expansion. This solution is transformed into a doubly infinite series, 
amenable to  computational purposes, in $5, using contour integration. The zeroes of 
the denominators used in 3 5 are given and discussed in $ 6 ,  and it is shown that all 
doubly infinite series decay exponentially with distance along the axis of the pipe. The 
above series are used in $ 7  to compute velocities and pressures, and various results are 
depicted. These results, and some common features with flow between parallel plates, 
are discussed in 9 8. 

2. Formulation of the problem 
Consider a force singularity (Stokeslet) in a viscous incompressible fluid inside a 

straight circular infinite pipe of radius R,,. We shall look at three co-ordinate systems. 
The first system is a cylindrical co-ordinate system R, @, 2, and is chosen such that the 
Stokeslet is situated a t  b, 0 ,  0 ,  see figure 1.  

The second system is a Cartesian co-ordinate system X ,  Y,Z, with origin at the 
origin of the cylindrical system and the same 2 axis. The X axis passes through the 
Stokeslet, and the Y axis completes the two. In  this co-ordinate system the Stokeslet 
is at b ,  0 , O .  The third system is also a Cartesian co-ordinate system x, y, z, parallel to 
the previous system, but shifted so that the Stokeslet in this system is a t  0, 0 , O .  

We are looking for the fundamental singular solutions (velocities and pressure) of the 
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Stokeslet situated as described above, and satisfying the no-slip boundary conditions 
on the pipe wall R = R,. 

There are three different sets of solutions corresponding to three independent direc- 
tions of the Stokeslet, and we choose the directions x, y, z, which also correspond to 
the directions R, 0, 2 at the Stokeslet. In  the x, y, z system we shall denote the three 
sets of solutions for the pressure and velocity, respectively, by 

P ” , u ~ = ( u ~ ~ ) ,  j = l , 2 , 3 ,  k = l , 2 , 3 ,  (2.1) 

where k = 1 , 2 , 3  corresponds to a Stokeslet pointing in the x, y,z directions, respec- 
tively, and j  = 1 , 2 , 3  corresponds to the components of velocity in the x, y, z directions, 
respectively. Alternatively, if we want the velocities in the R, 2, directions, we shall 
use the explicit notation us, u& u,”. 

The functions P k  and uk are the solutions of the Stokes equations 

VPk = ,uVW + 6(r)  e k ,  

V . U k  = 0,  

with the boundary conditions 

uk = 0 at R = R,, 

U k - + O ,  Z+&Co. 

Here e k  is a unit vector in the k direction, as above, ,u is t.,e viscosity, ant 

r = (x2 + y2 + z2)k  (2.6) 

The solution to (2.2) and (2.3) in an infinite fluid (i.e. the solution decaying to zero 
at T + W )  is given by (see, e.g., Blake 1971) 

where we have used the notation x, y, z 3 xl, xg, x3. This solution takes care of the 
singularity in (2.2) and we are left to solve for the correction, i.e. to solve for 

V p k  = p g k ,  (2.9) 

v . g k  = 0, (2.10) 

(2.11) 

gk’o ,  z++co. (2.12) 

with the boundary conditions 

g k ( R  = R,) = - V k ( R  = R,), 

The complete solution is then 

U k  = v k + g k ,  P k  = P ? + p k .  (2.13) 
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3. Transformation of singular solution 
The general solution to (2.9) and (2.10), with arbitrary prescribed boundary con- 

ditions on the surface of the pipe, is given by Happel & Brenner (1973) in the form of 
a Fourier-Bessel type expansion, see $4 below. In  order to use this solution it is 
necessary to express 3, Pf given in (2.7), (2.8) in the same form. 

Happel & Brenner (1973, p. 304) give the following relations : 

and 

_ -  - (  

where a prime denotes differentiation with respect to the argument. 
Using relations such as 

and the relations between the co-ordinate systems, 

X 2 +  Y2 = R2, X = Rcos@, Y = Rsin@, x = X - b ,  (3.4) 

which lead to the relations 

a sin@ a a . a C O S @  8 
-sin@-+-- 8R R a@' - cos@---- 

a 
ax a~ R a @ ;  iij- 
_ -  (3.5) 

we obtain (after some tedious algebra) the following expressions for the velocities: 

J a3 

4 7 ~ 2 , ~ ~ :  = 4n2,fiv3, = sink@ l:fi(h, R, k, b )  sin hzdh,  
k=--a,  
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and for the pressure 

I 
W 

2n2P: = 2 cos k@Iom t l (h,  R ,  k ,  b )  coshzdh, 
k = - m  

m 

2n2P2, = x sin k @  jOm t2(h,  R ,  k ,  b )  cos hzdh, 
k = - m  

731 

(3.7) 

4) 

2+P,3 = x cos k@ t3(h, R ,  k ,  b )  sin hzdh, 
& = - a  

where the functions ft, tk are given in appendix A. Once these functions are known we 
can proceed to find the auxiliary solutions gj”, pk.  

4. The auxiliary solution 
The general solution to (2.9) and (2.10) is given by Happel & Brenner (1973, p. 77) as 

a an 
g = V @ + V  x (!2e3)+R-(Vn)+e3- 8R a x  9 (4.1) 

Here n, @, D are harmonic functions and are given by 

m I 

where nk(h), @k(h), Wk(h) and the phases ui,  d{ are to be determined by the prescribed 
boundary conditions. Writing (4.1) explicitly, and substituting for n, @, !2 from (4.3), 
we obtain, for the three components of velocity in the R,  0, Z directions, the expressions 

g, = k =  5 - m ~ o m { c o s ( k @ + a ~ ) @ k ( h ) h ~ l ( h R ) C O S ( h 2 + 8 ~ )  

-sin ( k @  +a:) Ok(h) ( k / R )  Ik(hR) COS (hz + 8:) 
+cos ( k @  +ai)h2Rnk(h)Ii(hR) cos (hz+8i)}dA,  (4.4) 

g, = Sm(-Sin (k~++a%)(k/R)@k(A)Ik(hR)COS(hZ+S~)  
k = - m  0 

- COS ( k @  + 0.;) Wk(h) hIL(hR) COS (hz + 8;) 

$Sin ( k @ + a i )  (k/R)nk(h)Ik(AR)COS(hz+6:) 
- sin ( k @  + a i )  kTk(h) hlL(hR) COS (hz + 8:)> d h ,  (4.5) 

g, = loW { - Cos ( k @  +a$) h@k(h) Ik(hR) Sin (hz + 8;) 
k = - w  

- COS (k@ 4- a;) [h2RIL(hR) -t hlk(hR)] nk(h) Sin (hz + 8;))dh. (4.6) 
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For the pressure we obtain 
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p = 2,u 5 cos (kCD + ai )  A2nk(A) I,(hR) COB (Ax + 8;) dA. (4.7) 

In order to satisfy the boundary conditions (2.11) we have to match corresponding 
velocities. In  $ 3  velocities are given in the 2, y, z directions, and above in the R, CD, Z 
directions. We can transform either of them to the other form. We choose to transform 
gn, go, g, into g,, g,, 9,. This is achieved through 

k = - w  0 

g, = g R  cos CD - go sin @, 

g, = g,sinCD+gocos@, g2; = g,. (4.8) 

After transforming and rearranging one can now satisfy the boundary conditions (2.11) 
term by term in the Fourier sum. We have to deal with each of the three directions of 
the Stokeslet separately. 
(a) Stokeslet in x direction. In this case we choose 

ai = a: = 8 i  = 8; = = 0, ag = -877, (4.9) 

in (4.4)-(4.7). Using (4.8), rearranging and equating the Fourier coefficients term by 
term in (2.11), we obtain the following system of equations: 

A I k + l ( 4  - h&+1fs) hsG+,(s) 

- AI,(s) 0 - [As&) + AI , ( s ) ]  

where s = AR,, (4.11) 

and the functions H1, G1 and L’ are 

(4.12) 

. 
1 

Li = - - f :(A, Ro, k, b ) ,  
4772p J 

and fi are given in appendix A. 
The solution to (4.10)-(4.12) is 
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(b) Xtokeslet in y direction. I n  this case we choose 

8 1  A -  - 82 A = 8; = a$ = 0, a; = a i - - -&7, (4.15) 

in (4.4)-(4.7). Repeating the same procedure as before we now get for $;(A), @:(A) and 
n;(A) the same expressions as in (4.13), with the folIowing changes: H i ,  G% and Li are 
replaced by H i ,  GE, Li which are 

(4.16) 

and for Ak(A) @;(A) we have to change the sign of the entire right-hand side in (4.13). 
( c )  Stokeslet in  z direction. I n  this case we choose 

a; = a: = 0, af = 8; = 8: z 8; = -in, (4.17) 

in (4.4)-(4.7). Again, we now get for @$(A), @:(A), n:(A) the same expressions as in 
(4.13) with the following changes: H i ,  G i  and Li are replaced by H l ,  G i  and L& which 
are 

(4.18) I 1 
H i  = -* [ f ! (A,R, ,k+ 1 ,b )+f ; (h ,R , ,k+1 ,b ) l ,  

1 
G $ =  -- [ f ! (h ,Ro,k-  1 ,b ) - f ; (A ,R , ,k -  1,b) l3  4n2p 

1 
Li = -f:(A, R,, k ,  b ) .  

47Pp 

This completes the solution for all three cases, but it is obvious that very little informa- 
tion can be obtained from the solution in this form. I n  order to obtain more insight into 
the solutions, and to be able to compute velocities and pressures, we shall transform 
this solution to a form amenable for computational purposes. This will be done in the 
next section. 

5. Alternative form of the solution 
As can be seen from (4.4)-(4.7), (4.12)-(4.14), (4.16), (4.18) and appendix A, if we 

divide numerator and denominator [which is Ak(h) given in (4.14)] by A, we can express 
all integrals in terms of the variables AR,, AR, Ab, and hz. Changing then to integration 
over s = AR,, and non-dimensionalizing R,  b ,  z by R,, velocities by i/,uR,andpressure 
by l / R i  (the last two are multiplied by force to get the proper dimensions), we can 
express $k, w, and "k and the integrals as functions of s = hR,, sz, sb and sR, where 
z, b, and R are now non-dimensionalized. 

The denominator in $k,  n k ,  @k is now 

D k ( S )  = ( lk - l ( s )  lk+l(s))' - 2(sJk(s))' Jk- l ( s )  Jk+ l ( s ) .  (5.1) 
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I 

FIGURE 2. The contours of integration in the complex 8 plane. 

The general form of thesolution for the velocities and pressure is 

In  what follows we shall assume z > 0. If z < 0 then uF(z)  = & uf( - z )  depending on 
whether we have cos sz or sin sz in the integral. 

Consider the following two integrals in the complex s plane, see figure 2, for L +- co : 

For cos sz we take the sum of the two, and for sin sz the difference of the two (divided 
by i). 

It can be shown that in all cases the following hold: 

(5.7) 
L-tc0 lim [s,-/cl = 0, 

for the cossz cases, and 

for the sinsz cases. The proof of (5.5)-(5.7) for all cases is straightforward but tedious 
and will not be reproduced here. 

We are therefore left with the integrals in (5.2) being equal to the sum of residues 
due to Dk(s), in the first and fourth quadrants. 

As will be seen in the next section there are t,hree types of roots for D,(s) in the 
first quadrant : 

( 1 )  a sequence of complex roots which we denote by 

x, = a, +ib,, n = 1,2, ..., (5.8) 
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(2) a sequence of imaginary roots which we denote by 

yn=icn, n = 0 , 1 , 2  ,..., (5.9) 
(3) a root at the origin, s = 0. 
The roots in the fourth quadrant are the complex conjugates of those in the first 

quadrant. 
It follows that residues from xn will be multiplied by 26, residues from yn by ni, and 

residues from the origin by ini (excluding the origin in the contour integration). It 
turns out that there are no residues from the prigin for all velocities. For the pressure 
the only possible residue from the origin is forthe k = 0 term in (4.7). In  the cases (a )  
and ( b )  in 94, (4.7) will have cos hz under the integral sign. The residue from the origin, 
if any, will therefore add a constant, and pressure is defined anyway up to an additive 
constant. In case (c), of a Stokeslet in the z direction, (4.7) has sin hz under the integral 
sign. It follows that the residue at the origin will add a constant for z > 0,  and its 
negative for x < 0, and so must be considered. 

The full expressions for the velocities and pressure, using the above procedure, 
are given in appendix B. 

6. The roots of Dk(s) and the far field 
For the computation of the residues as described in the previous section, we need the 

roots of Dk(s) given in (5.1), in the first quadrant. If s is a root, so are -9, & 3, so we 
shall look at the roots in the first quadrant of 

BAS) = S C J ~ ( S )  - JL(S)  J~+~(s)I C J ~ - - I ( S )  - J+~(s)I - 4 ~ k - l ~  U S )  J,+~(s) .  (6.1) 

If s = b + ia is a root in the first quadrant of Dk(s) then iS = a + ib is a root of Dk(s) in 
the first quadrant. 

Glearly Bk(s) has a root at s = 0. 
To get an estimate for the other roots let us look at the asymptotic formula for Jk(s). 

From Abramowitz & Stegun (1965) 

Jk(s) - (~ /z s )~cos ( s -&~T-+~~T) ,  s > qk,. (6.2) 
If y = s-&r-ikn,  then substituting (6.2) into (6.1) we get 

(s - sin 2y) sin y N 0. (6.3) 

from which we get two possible sequences : 
(i) sin y N 0, from which we obtain for the roots of Dk(s), 

yn = ic, N i [ & n + + k n + n ~ ] ,  n = 0,1, ... ; (6.4) 

zn = a n + i b n -  QIn[(2n+k+l)n]+(2n+k+l)&ri ,  n =  0,1, .... (6.5) 

Equation (6.4) gives the asymptotic estimates for the imaginary roots, and (6.5) those 
for the complex roots. In  table 1 we give the first four imaginary roots for each k ,  
for k = 0, . . . , lo .  The roots of k = 0 are the roots of Il(s), see also appendix B. In  table 2 
we give the first three complex roots for each k ,  for k = 0, . . . , lo .  

If we look at the detailed expressions for the velocities and pressure given in 
appendix B, we see that for each k in the outer sum we have two inner sums. Both are 

(ii) s N sin 2y, from which we obtain for the roots of Dk(s), 
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k 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

n 
r A 

7 

1 2 3 4 

3.83173 7.01563 10.1733 13.3243 
5.31723 8.53303 11.7053 14.8633 
6.67413 9.96073 13.1673 16.3463 
7.96783 11.3323 14.5803 17.7853 
9.22183 12.6633 15.9553 19.1913 

10.4483 13.9636 17.3013 20.5693 
11.6533 15.2403 18.6243 21.9243 
12.8413 16.4973 19.9263 23.2596 
14.0163 17.7381 21.2113 24.5763 
15.1803 18.9653 22.4812 25.8793 
16.3343 20.18 13 23.7393 27.1693 

TABLE 1. The first four imaginary roots y,(k) of Dk(8), see (5.1), 
(5.9), in the first quadrant, for k = 0, ..., 10. 

k 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

r 
1 

1*1226+ 2.56784 
1.3119+ 3.91453 
1.4476 + 5.15973 
1.5576 + 6,35623 
1.6518 + 7.52293 
1.7349 + 8.66923 
1*8100+ 9.80043 
1.8786 + 10.9203 
1.9421 + 12.0303 
2.0013+ 12.1323 

n 
h 

7 

2 3 

1.4675 + 4.46634 
1.6081 + 6.00383 
1.7140+ 7.41573 
1.8024+ 8.75863 
1*8796+ 10.0563 
1.9489 + 11.3223 
2.0122 + 12.5633 
2.0706+ 13.7853 
2.1251 + 14.9913 
2*1763+ 16.1843 
2.2247 + 17.3653 

1*7270+ 7.69413 
1.8169+ 9.23223 
1.8926 + 10.6843 
1.9594+ 12.0803 
2.0197+ 12.4343 
2.0750 + 14.7573 
2*1264+ 16.0553 
2.1745+ 17.332i 
2-2199+ 18.5923 
2.2629 + 19.8373 
2*3038+ 21.0693 

TABLE 2. The first three complex roots z,(k) of Dk(s),  see (5.1), 
(5.8), in the first quadrant, for k = 0, 1, ..., 10. 

exponentially decreasing series, with the first decaying like exp ( - box) and the second 
like exp ( - cox).  For the behaviour of b, and co with k we look at tables 1 and 2. From 
table 1 we see that co(k)  > c o ( l ) + k ,  and from table 2 that b,(k) > b, (O)+k.  Thus 
summing over the outer series, we get that the total expressions decay exponentially 
with z,  at least as fast as exp ( - 2.572). The functions Fi and I5 in (B 3) cause no problem 
as they behave like exp ( - s( 1 - R,)) exp ( - s( 1 - b ) )  for 1st % 1. We thus get that all 
velocity components decay exponentially with z, and so do PI and P2. P3 tends 
exponentially to its value at  x = co, which is (1 - b 2 ) / m ,  from (B 3). In  the dimensional 
variables we get therefore that a Stokeslet pointing in the x direction will raise the 
pressure from 

to 

and the approach to these limiting values is exponential with 1x1 +m. 
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FIGURE 3. Velocity profiles of u: with R for various z. The Stokeslet is situated at  R = z = 0 ( b  = O), 
pointing in the z direction. This flow is axisymmetric. 

7. Numerical results 
Some numerical results will be exhibited in this section. The most interesting case is 

the case of a Stokeslet pointing downstream, in the z direction, and we shall show 
results for u: and P3, for several cases. The case b = 0 (Stokeslet on the axis) is depicted 
in figures 3-6. Figure 3 shows velocity profiles uf as a function of R, for various z. As this 
flow is axisymmetric, and the total flux through a cross-section must be zero, Liron 
1978), each of these curves must satisfy 

/olBu:(R,z)dB = 0. 

The exponential decay of the velocities, with z, is exhibited in figure 4, and the approach 
of P3 to P", with z +a, is shown in figure 5.  Only z > 0 is shown since P3 (R, x )  is an 
odd function of z. It is seen that near the Stokeslet the pressure overshoots the 
value P? and then decays towards it, while further away, radially, the pressure 
increases monotonically to its limiting value. Both the velocity and the pressure 
are already very close to their limiting values a t  a distance of one radius up or 
downstream. 

25 F L M  86 
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FIQURE 5. Pressure distribution nR:Pa with z for various R depicting the convergence to PL. 
The Stokeslet is a t  R = z = 0 ( b  = 0 ) ,  pointing in the z direction. This flow is axisymmetric. 
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FIQUFCE 6. Streamlines in the pipe for a Stokeslet at R = z = 0 

pointing in the z direction. This flow is axisymmetric. 
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For the case b = 0, and the Stokeslet in the z direction, one has axisymmetric flow, 
and one can define a stream function Yr = Y(z,  R), 

This stream function can be found explicitly and is given by 
m 

n = l  
Y = - 2n C exp ( - bnz)  Im {exp (ia,z) 

x W3(xn, 0 )  Rll(xnR) + R2xnII(xnR) n3(xn, O ) I / x n ~ ~ ( ~ n ) ) ,  (7.2) 

where x, = a, + ib, are the complex roots of Do(s) described in 4 6, and 11.3, n3 are 
given in appendix B (with b = 0). Streamlines of 8pR; Y are given in figure 6, and 
are symmetric in z. We see that the Stokeslet creates a circulation (a rotating torus) 
the strength of which decays rapidly away from the Stokeslet. 

The case b + 0 is more complicated since we have a true three-dimensional flow. 
For simy;licity we shall exhibit results for the downstream velocity averaged over 
the angle a. Thus we define 

uE(R,z) = (R, 2, @)do, (7.3) 

and in figure 7 we compare the average velocities at z = O.lRo for several values 
of b. I n  all cases the Stokeslet a t  R = b, z = 0 is pointing in the z direction. We see 
that velocity is maximal opposite the singularity and compensates by becoming 
negative further away, to maintain zero flux. For b = 0-5R0 the velocity is negative 
(on the average) both closer to  the wall and closer to the pipe axis. The maximum 
velocity diminishes the closer the Stokeslet is to the pipe wall. The same phenomena 
exist further downstream except for b = 0-5R,, the negative part closer to the wall 
becomes positive. 

8. Discussion 
We have given here the flow fields and pressures for Stokes flow due to a force 

singularity (Stokeslet) at arbitrary location and arbitrary orientation inside an infinite 
pipe. Two forms of the solution were given: one in a form of a Fourier-Bessel type 
expansion, and the other as a doubly infinite series. The second form is particularly 
amenable to computational purposes as it has been shown to be an exponentially 
decaying series. 

All velocity components were shown to decay exponentially, away from the Stokes- 
let, up- or downstream. This was also true of t,he pressures for Stokeslets perpendicular 
to the axis. For a Stokeslet parallel to the axis the pressure field rises from a value of 

- (1  - (b/Ro)2)/nRg at z = - a0 to + (1 - (b/Ro)2)/nRE at z = +co. 

The approach to these values is also exponential with z. These results are the same as 
for a uniform distribution of equal strength Stokeslets on a line parallel to, and 
between, two flat plates, where z is the direction normal to the line, as shown by Liron 
(1978). These results are important in modelling cilia fluid transport in a pipe, by 
approximating this flow by a flow between two parallel plates, Liron (1978). 

The flux due to a Stokeslet in a pipe is zero. This follows since the flux is equal a t  
every cross-section, by incompressibility, and is bounded by the cross-sectional area, 
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times the maximum velocity over the cross-section, and the latter goes to zero as 
z 4 c o .  The exponential decay of the velocities makes it possible to change the order 
of summation and integration when computing the flux due to an infinite sequence of 

Stokeslets situated along the pipe from z = -00 to z = +a (force per unit length 
parallel to pipe axis, z )  and therefore in this case we again get zero flux. Non-zero flux 
will then come only from adding a Poiseuille flow, as is discussed in the parallel-plates 
case by Liron (1978). 

As in the case of flow between parallel plates, there will be a pressure rise per unit 
length associated with a uniform force per unit length, F ,  along z (and pointing down- 
stream). This pressure rise is equal to Ap = 2F(l  - (b/Ro)2)/nR& and is equal to the 
pressure rise created by one Stokeslet of strength F, from z = - 00, to z = + 00. 

For a single Stokeslet between, and parallel to, two plates, the flow field one gets is 
a circulation in planes parallel to the plates, which extends to infinity, see Liron & 
Mochon (19763). For a Stokeslet in a pipe parallel to the axis we obtain a torus- 
shaped circulation. This difference is due to the fact that in a pipe there is no infinite 
lateral direction to the axis, unlike a single Stokeslet between parallel plates. The 
proper comparison should be between a single Stokeslet in a pipe and a uniform 
distribution of Stokeslets along a line between parallel plates, as mentioned above, 
and discussed by Liron (1 978). 

The exponential decay of velocities is also important in modelling cilia in a pipe 
because, in order to find the velocity field caused by an infinite array of cilia, we distri- 
bute Stokeslets along each cilium, and then sum over the entire infinite (in the z direc- 
tion) array, see Blake (1972)) Liron & Mochon ( 1 9 7 6 ~ ) )  Liron (1978). The exponential 
decay with Jz I  of velocity components due to each Stokeslet ensures us the possibility 
of such a summation. 

This research was supported in part by the U.S. Army Research Office, Durham 
(grant DAAG-29-76-G-0315), while one of the authors (N. L.) was a Visiting Associate 
Professor with the Department of Mathematical Sciences, a t  Rensselaer Polytechnic 
Institute, summer 1976. 

where a prime denot,es differentiation with respect to the argument,. 
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For R < b interchange the functions I and K throughout, and forfi change also the 
sign of the second square brackets from a minus to a plus. Forfi change the sign of the 
square brackets from plus to minus. 

Appendix B 

described in $5, for z > 0, are as follows. Let 
The detailed expressions for all velocities and pressures, using the procedure 

co m 

A ( F ( s ) )  = - 2n  exp ( - bnz) Im [exp (ianz) F(xn) ]  - n C exp ( - cnz)  Im [ P ( y , ) ] ,  
n = l  n= 1 

(B 1)  

(B 2 )  

where Re stands for the real part, Im for the imaginary part, and x ,  = an+ibn, 
yn = ic,  are given in $6, and are functions of k. 

and 
m m 

n = l  n = l  
B(F) = 2n  Z exp ( - b,z) Re [exp (ianz) P ( x n ) ]  + n Z exp ( - cnz )  Re [ F ( y , ) ] ,  

We then have 

00 

u& = Z { [ A  (F]iz(s, k)) Sjl + B(FL(s, k)) S,,] COB k@ + A(F$(s, k)) Sj,sin k@] 
k = - m  

+n- l ( l -b2 )S j3 ,  j = 1 , 2 , 3 .  
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then the functions in (B 3) can be expressed as follows : 

FiR(s,k) = (Sj, + 4 3 )  cl(p(s, k), wqs, k), nqs, k), k) 
+ 42C1C@-"(s, w, - w2(s,  k), n2(s, k), k), 

m, k) = (Sj, + 4 3 )  C,( - @Is, k), - wqs,  k), nqs, k), k) 
+ 8j2c2($2(s, 4, - w2(s, k), -n2(s, k), k), 

m, 4 = ( 4 3  - sj, - 4,) c,cpqs, k), nqs, k), k), 
V(S, k) = Cd(~j(8, k), k), j = 1,2,3,  

where 

I $j(s, k )  = dl(Lj(s ,  k ) ,  H ~ ( s ,  k ) ,  Gi(s,iC), k ) ,  

~ ' ( 8 ,  k) = dZ(Lj(s, k), Hj(s, k ) ,  Gj ( i ,  k ) ,  k )  (Sjl - Sj2 + Sj3), 

nj(s, k )  = d3(Lf(s ,  k ) ,  Hi($,  k ) ,  G ~ ( s ,  k ) ,  k), j = 1,2,3.  

The functions Li, H i ,  Gi are 
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and 

(B 10) 

4n2L3(s, k )  = I,(sb) [2K,(s) + sK;(s)] + sbK,(s) I ;@) ,  

4n2H3(s, k) = SllbKk+l(4 I,lc+l(Sb) - K k ( S )  f,(sb)l, 
4n2G3(s, k )  = ~ [ b K k - l ( ~ )  I k - l ( ~ b )  - K ~ ( s )  I k ( ~ b ) ] .  

I n  all expressions above, a prime denotes differentiation with respect to the argument. 
Dk(s) appearing in (B 4 )  is given in (5.1). 

I n  (B 3) there is no contribution from k = 0 for these expressions which have sink@ 
under the sum. For those sums with cos k@ there is a contribution from k = 0. It turns 
out that  in these cases, for k = 0, both numerator and denominator in (5.2) have a 
common factor Il(s). Il(s) contributes the roots 9, on the imaginary axis in this case 
and it follows that for k = 0 one should omit the second sum in (B l),  (B 2). The one 
exception is u;, for which Il(s) does not appear in the numerator, but rather that part 
contributing the complex roots x, is a common factor. I n  this case then, one should 
omit the first sum in (B l) ,  for k = 0. 
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